按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
据。至於准大衍之数以制《河图》,准太乙行九宫法以造《洛书》,皆起於陈抟以后。后夔典乐之日,实无是文。载所定舞图,皆根《河》、《洛》以起数,尤不免附会牵合。然数不外於奇偶,奇偶不外於阴阳,《易》道广大,事事可通,亦未始不言之成理。束晳之补《六诗》,皮日休之补《九夏》,不必其定合於古,要犹存古义於万一,终胜於侧调幺弦,导欲增悲者也。则载是书亦不妨存备一说矣。其书屡经传写,讹误宏多。如《音图》第八章“至哉坤元”之“坤”字,据后《义图》应在第八格,而旧本误在第七格。又如《缀兆始成图》中层左右皆阙两位,据舞用八佾当得六十四人,不应再成以下皆六十四,始成乃止六十。且复缀即始成之位次,后《采章图》内亦各有黄衣二人之位。则此图之佚脱显然。今并校正,使复其旧。
其以朱圈、墨圈记舞人之位者,亦间有淆乱,并釐正焉。
△《律吕成书》·二卷(永乐大典本)
元刘瑾撰。瑾有《诗集传通释》,已著录。是书以候气为定律之本,因而推其方圆周径,以考求其积分。盖瑾之学笃信宋儒,故其注《诗》守朱子之说,不逾尺寸。其论乐守蔡氏、彭氏之说,亦不逾尺寸也。考《管子·地员篇》,称呼音中徵、中羽之数,及《吕氏春秋·古乐篇》称伶伦先制黄钟之宫,次制十有二筒,咸不言候气。至司马彪《续汉书志》,始载其法。相传为出於京房,然别无显证。《隋书》载后齐信都芳能以管候气,仰观云色,尝与人对语,即指天曰:“孟春之气至矣。”人往验管而飞灰果应。又称毛爽草《候气法》,述汉魏以来律尺稍长灰悉不飞。其先人柄诚与其兄喜所为律管,皆飞灰有徵应。然后来均不用其法。蔡邕有言,古之为钟律者,以耳齐其声。后人不能,假器以定其度。以度量者可以文载口传,然不如耳治之明决也。然则舍可辨之音而求诸杳茫不可知之气,斯亦末矣。至蔡氏《律吕新书》推衍旧文,仍言候气。其数以径一围三立度,为算颇疏。彭氏觉其未合,改用祖冲之径七围二十二之率。然稽诸《隋志》,此犹约率,非密率也。瑾合二家之书,反覆推衍以成是编,较诸古人之神解,诚未必窥其精微。然宋儒论乐,所见不过如此。有元一代,著述尤稀,此书犹不甚支离者。长短兼存,以资考订,固亦不妨姑备一说云尔。
△《苑洛志乐》·二十卷(浙江汪启淑家藏本)
明韩邦奇撰。邦奇有《易学启蒙意见》,已著录。是书首取《律吕新书》为之直解,凡二卷。前有邦奇《自序》,后有卫淮《序》。第三卷以下乃为邦奇所自著。其於律吕之原,较明人所得为密,而亦不免於好奇。如《云门》、《咸池》、《大章》、《大夏》、《大韶》、《大濩》六乐,名虽见於《周官》,而音调节奏,汉以来无能传者。邦奇乃各为之谱,谓黄帝以士德王,《云门》象天用火,起黄钟之徵,以生为用,则林钟也;《咸池》象地用水,起大吕之羽,以土所克为用,则无射也;《大章》、《大韶》皆起於黄钟;夏以金德王,林钟属金,商声,故《大夏》用林钟之商南吕,以南吕起声;商以水德王,应钟属水,羽声,故《大濩》用应钟之羽夷则,用夷则起声。今考旋宫之法,林钟一律以黄钟之徵为火,以仲吕之商为金。若以月律论之,则是六月之律而非金也。故邦奇於《大夏》下自注云:“相缘如此,还用夷则为是。”则夷则为七月之律属金,与《大濩》用应钟为十月之律属水者一例矣。然则林钟、夷则不已两岐其说乎?又谓:“《大司乐》圜钟为宫,以南吕起声,一变在姑洗,至六变在圜钟,故云‘若乐六变,则天神皆降’。函钟为宫,以应钟起声,一变在蕤宾,至八变在函钟,故云‘若乐八变,则地祇皆出’。黄钟为宫,以南吕起声,一变在姑洗,至九变在黄钟,故云‘若乐九变,则人鬼可得而礼’。”今考《左氏传》谓“五降之后不容弹矣”,则宫、徵、商、羽、角五声也。《前汉书·礼乐志》曰“八音七始”,则宫、徵、商、羽、角、变宫、变徵七声也。凡谱声者率不越此二端。此书圜钟为宫,初奏以黄钟之羽南吕起声,顺生至黄钟收宫,凡得十声。次奏用林钟之羽姑洗起声,而姑洗实为前奏黄钟之角,所谓用宫逐羽而清角生也。函钟为宫,用太蔟之羽应钟起声,顺生至本宫太蔟,又顺生徵、商二律,复自商逆转徵、宫二律收宫,凡得十四声。商不顺生羽而逆转为徵,所谓引商刻羽而流徵成也。黄钟为宫,凡阳律之奏用宫逐羽,阴吕之奏引商刻羽,是以十声与十四声各五奏也。
至谓周乐皆以羽起声,本於《咸池》,而於黄钟为宫,起南吕,则用黄钟本宫之羽;函钟为宫,起应钟,应钟为太蔟之羽,太蔟为林钟之徵,则又用徵之羽矣;圜钟为宫,起南吕,南吕为黄钟之羽,黄钟为圜钟之羽,则又用羽之羽矣。同一用羽起声,而所用之法又岐而为三。推其意,不过误解《周礼》“八变”、“九变”之文。以函钟为宫当在初奏之第九声,方与“八变”合,即不得不以应钟为第一声,而应钟非函钟之羽也。以圜钟为宫当在初奏之第七声,方与“六变”合,即不得不以南吕为第一声,而南吕非圜钟之羽也。即又不得不谓应钟为羽之羽,南吕为徵之羽矣。由杜撰而迁就,由迁就而支离,此数卷最为偏驳。其他若谓凡律空围九分,无大小之异,其九分为九方分;蕤宾损一下生大吕,优於益一上生大吕。以黄钟至夹钟四清声为可废,以夷则至应钟四律围径不当递减,虽其说多本前人,然决择颇允。又若考定度量、权衡、乐器、乐舞、乐曲之类,皆能本经据史,具见学术,与不知而妄作者究有迳庭。史称邦奇性嗜学,自诸经、子史及天文、地理、乐律、术数、兵法之书,无不通究,所撰《志乐》尤为世所珍,亦有以焉。末有嘉靖二十八年其门人杨继盛《序》。据继盛自作《年谱》,盖尝学乐於邦奇。所云夜梦虞舜击钟定律之事,颇为荒渺。然继盛非妄语者,亦足见其师弟覃精是事,寤寐不忘矣。
△《钟律通考》·六卷(浙江范懋柱家天一阁藏本)
明倪复撰。复有《诗传纂义》,已著录。是书凡二十七章,始於《黄钟本原》,终於《风雅十二诗图谱》。其中或标卷目,或不标卷目。疑传写者有所佚脱,非其旧也。卷首有嘉靖丙戌张邦奇《序》,谓其本之《仪礼》经传,参之西山蔡氏之说,历考古今制度,辨正百家之得失,以求合乎声气之元。今考是书,大端不失古法。其中如《吕氏春秋》黄钟三寸九分,与历代律书九寸之说不合。是书则谓三寸者,三三九寸也;九分者,九方分也。后何瑭及郑世子载堉皆用是说。
至於“五声”,“二变”,明有《国语》伶州鸠之说可证。而是书乃谓宫属君,周加变宫,因诛纣也;徵属事,周加变徵,示革商之旧政也:殊杜撰无稽。又所载《六十调图》,若黄钟五调以无射为商、夷则为角、仲吕为徵、夹钟为羽之故,同时韩邦奇於蔡氏旧图疏解甚详,而此书乃竟不之及,尤不免於漏略。然其中亦颇有可采者。如《左氏传》“中声以降,五降之后不容弹矣”,蔡元定谓“五声之后二变不容为调”,朱子谓“蕤宾以下不可为宫”,是书则谓朱子之说与《礼记》所云旋相为宫似有未合,故特从元定。又若黄钟生十一律,倍其实,四其实,三其法,及角音六十四,生变宫、变徵,类能并列朱、蔡异同之法,参互详审,颇为不苟,亦可谓勤於此事者矣。
△《乐律全书》·四十二卷(浙江巡抚采进本)
明朱载堉撰。载堉,郑恭王厚焥世子也。是书万历间尝进於朝。《明史·艺文志》作四十卷。今考此本所载,凡书十一种。惟《律吕精义》内、外篇各十卷、《律学新说》四卷、《乡饮诗乐谱》六卷,皆有卷数。其《乐学新说》、《算学新说》、《操缦古乐谱》、《六代小舞谱》、《八佾缀兆图》、《灵星小舞谱》、《旋宫合乐谱》七种,则皆不分卷。与《艺文志》所载不符,疑史误也。
载堉究心律数,积毕生之力以成是书。卷帙颇为浩博,而大旨则尽於《律吕精义》一书。其说谓度本起於黄钟之长。就此黄钟而均分为十寸,寸十分,命曰一尺,当横黍百粒,是为度尺。若以此黄钟分为八寸一分,寸九分,凡八十一分,当纵黍八十一粒,是为律尺。又横黍百粒,纵黍八十一粒,当斜黍九十粒,是黄钟之长。以横黍尺度之,则为一尺,寸十分,凡百分。以纵黍尺度之,则为八寸一分,寸九分,凡八十一分。以斜黍尺度之,则为九寸,寸十分,凡九十分也。
其十二律长短之数则据《栗氏》“为量,内方尺而圜其外”之文,谓圆径即方斜,命黄钟正律为一尺,用句股求弦术,得弦为蕤宾倍律。盖黄正为句股,则蕤倍为弦。蕤正为句股,则黄正为弦。黄、蕤二律互为句股也。其生南吕应钟诸律,非句股所能御,盖本於诸乘方比例相求之法。载堉云句股术者,饰词也。律管长短由於尺有大小。其云黄钟九寸者,盖算术设率如此。亦犹郑康成注十二律分、寸、釐、毫、丝之数,破一寸以为十分,乃审度之正法,太史公约十为九,则欲其便於损益而为假设之权制也。或者诃其以一尺为黄钟,与九寸之文相反,可谓不达其意矣。仲吕反生黄钟,自何承天、刘焯、胡瑗皆有是说。蔡氏论之,以为惟黄钟一律成律,他十一律皆不成律。不知律生於声,不生於数,吹之而声应,则成律矣。若迁就其声以就数,则五音且不和矣,尚得谓之律耶?又或者以其开方乘除有不尽之数为病。夫理之当用开方乘除而数有畸零者,虽秒忽不尽何害?
假令句股求弦,而句方、股方相并以平方开之不尽,亦将谓之不成弦耶?此不知算术者也。是书所论横黍百粒当纵黍八十一粒之尺度及半黄钟不与黄钟应而半太蔟与黄钟应之说,皆精微之论。圣祖仁皇帝《律吕正义》一书备采其说,不可以其与蔡氏有异同而置之也。至其十二律相生之法,以黄钟正律一尺为第一率,倍黄钟二尺为第十三率,则蕤宾倍律为第七率,故仲吕可以返生黄钟。左旋、右旋,皆可径求次律,即诸乘方用连比例相求之法也。试列十三率明之。以真数一为首率,即第一率。方边二为二率。平方四为三率。立方八为四率。三乘方十六为五率。四乘方三十二为六率。五乘方六十四为七率。六乘方一百二十八为八率。七乘方二百五十六为九率。八乘方五百一十二为十率。九乘方一千零二十四为十一率。十乘方二千零四十八为十二率。十一乘方四千零九十六为末率,即十三率。
以首率一乘末率四千零九十六开平方,而得七率六十四,即黄钟求蕤宾法。以七率六十四乘首率一开平方,得八为四率,即蕤宾求南吕法也。以首率一自之,又以四率八乘之,开立方得二率方边二,即南吕求应钟法也。若四率八自之,再以首率一乘之,开立方得三率四,即南吕求无射法也。其比例则首之於二,犹二之於三;二之於三,犹三之於四。依次至第十三率,比例皆同。或前隔一位,隔二三位,与后隔一位,隔二三位,比例亦同。即各律求各次律法也。书中未明言其立法之根。又黄钟正律倍律相乘开方,有类句股求弦与方求斜二术。自蕤宾求南吕法以下,非勾股法所能御,而亦以句股言之,未免过於秘惜,以涂人耳目耳。
江永著《律吕阐微》一书,专解载堉之法。永最深晰算术,而犹不能得其立法之意,馀可知矣。
△《御定律吕正义》·五卷康熙五十二年,圣祖仁皇帝御定《律历渊源》之第三部也。凡分三编。《上编》二卷,曰《正律审音》,以发明黄钟起数及纵长体积、面;幂周径、律吕损益之理、管弦律度旋宫之法,《下编》二卷,曰《和声定乐》,以明八音制器之要。各有图说,而於各篇之中详考古今之同异。《续编》一卷,曰《协均度曲》,则取波尔都哈儿国人徐日升及壹大里呀国人德里格所讲声律节奏,证以经史所载律吕宫调诸法,分配阴阳二均字谱。亦有图有说。案造律之法必先累黍。汉魏以后,迄无定论。尺既不定,则黄钟真度亦无由得。恭惟圣祖仁皇帝天纵神圣,以纵横二黍相较。横黍百粒,适当纵黍八寸一分之限。用四率比例,推得古黄钟九寸为今尺之七寸二分九釐。其体积、面幂、周径皆用密率乘除,至为精密。此千古难明之绝学,待圣人而明者也。又言乐者率宗司马迁、《淮南子》之说,以三分损益之术误为管音五