友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
3C书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

网游之我是孙悟空-第130章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



    原来刘卷的第一题是:从任意一个正整数开始,重复对其进行下面的操作:如果这个数是偶数,把它除以2;如果这个数是奇数,则把它扩大到原来的3倍后再加1。序列是否最终总会变成4,2,1,4,2,1,…的循环?
    这个问题可以说是一个“坑”——乍看之下,问题非常简单,突破口很多,于是数学家们纷纷往里面跳;殊不知进去容易出去难,不少数学家到死都没把这个问题搞出来。已经中招的数学家不计其数,这可以从3x+1问题的各种别名看出来:3x+1问题又叫collatz猜想、syracuse问题、kakutani问题、hasse算法、ulam问题等等。后来,由于命名争议太大,干脆让谁都不沾光,直接叫做3x+1问题算了。
    3x+1问题不是一般的困难。这里举一个例子来说明数列收敛有多么没规律。从26开始算起,10步就掉入了“421陷阱”:
    ……。
    但是,从27开始算起,数字会一路飙升到几千多,你很可能会一度认为它脱离了“421陷阱”;但是,经过上百步运算后,它还是跌了回来:
    ……。
    刘卷第二个问题是:
    随机01串的最长公共子序列
    如果从数字序列a中删除一些数字就能得到数字序列b,我们就说b是a的子序列。例如,110是010010的子序列,但不是001011的子序列。两个序列的“公共子序列”有很多,其中最长的那个就叫做“最长公共子序列”。
    随机产生两个长度为n的01序列,其中数字1出现的概率是p,数字0出现的概率是1…p。用cp(n)来表示它们的最长公共子序列的长度,用cp来表示cp(n)/n的极限值。
    关于cp的存在性,有一个非常巧妙的证明;然而,这个证明仅仅说明了cp的存在性,它完全没有给计算cp带来任何有用的提示。
    即使是c1/2的值,也没人能成功算出来。michaelsteele猜想c1/2=2/(1+√2)≈0。828427。后来,v。chvatal和d。sankoff证明了……,看上去michaelsteele的猜想似乎很可能是对的。2003年,geelueker证明了0。7880
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!