友情提示:如果本网页打开太慢或显示不完整,请尝试鼠标右键“刷新”本网页!阅读过程发现任何错误请告诉我们,谢谢!! 报告错误
3C书库 返回本书目录 我的书架 我的书签 TXT全本下载 进入书吧 加入书签

你知道吗--现代科学中的100个问题-第5章

按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!



径就会缩小到只有原来直径的1/100,000。

    如果我们的地球被压缩成为一团原子核,其中的所有物质就将被挤压成一个直径只有128米的球体。太阳如果也受到这样的挤压,它将成为一个直径只有13.92公里的球体。如果宇宙的全部已知物质都被转换为相互接触的原子核,那么,它们将会成为一个直径为几亿公里的球体,可以绰绰有余地纳入太阳系的小行星带中。

    恒星中心的热和压力能够破坏原子的结构并使原子核开始挤压到一起。太阳中心的密度要比锇原子的密度大得多,但是其中的一个个原子核仍然可以不受阻碍地自由运动,其中的物质仍然呈气体状态。有一些恒星却几乎完全由这样一些已被破坏的原子所组成。例如,天狼星的伴星就是一颗并不比天王星大的“白矮星”,但是它的质量却和太阳一样大。

    原子核是由质子和中子组成。所有质子都带有正电荷并会相互排斥,因此不可能把一百个以上的质子集合在一处。然而中子是不带电荷的,在适当的条件下,无数中子能够积聚在一起而形成一颗中子星。人们认为脉冲星就是这样的中子星。

    如果太阳一旦变为一颗中子星,它的全部质量将会被挤压成一个直径只有现有直径的1/100,000的球体,或者说将成为一个体积只有现有体积的1/1,000,000,000,000,000的球体。这样一来,它的密度将会是其现在密度的1,000,000,000,000,000倍。

    太阳目前的总密度是每立方厘米1.4克。如果它一旦变为中子星,它的密度就将成为每立方厘米重1,400,000,000,000,000,000克。

    这就等于说,中子星上的每一立方厘米物质重达1,400,000,000,000吨(14亿吨)。
第15节
    为了了解什么是黑洞,让我们先从太阳这样的恒星谈起。我们知道,太阳的直径为1,392,000公里,它的质量为地质质量的330,000倍。在这样大的质量、从表面到中心的距离这样长的情况下,位于太阳表面的任何东西所受到的引力大约相当于地球表面引力的28倍。

    任何一颗普通的恒星都会由于下述两种因素的相互平衡而保持其通常的大小。其中一个因素是恒星中心有非常高的温度,因而会使恒星的物质经常处于膨胀的状态。另一个因素就是它本身具有很大的引力,从而会使恒星的物质倾向于收缩而挤压在一起。

    但是在恒星生存期的某一阶段,其内部温度将会降低,这样一来,引力将会成为一个主导的因素,结果,这颗恒星就会开始坍缩,在这个过程中,恒星内部物质的原子结构会遭到破坏。这样一来,原子将不复存在,替代它的将是一个个电子、质子和中子。这颗恒星将会坍缩到这样一种程度,这时电子的相互排斥力将使该恒星不能够再进一步坍缩。★米★花★书★库★ ;http://www。7mihua。com

    这颗恒星于是就成为一颗“白矮星”。像太阳这样的恒星一旦坍缩成为一颗白矮星,它的全部物质将被挤压成为一个直径只有大约16,000公里的球体,它的表面引力将变成地球表面引力的210,000倍(因为它的质量虽然没有变,但是从表面到中心的距离则大大缩短了)。

    在某些条件下,引力将变得如此之大,甚至能战胜电子之间的排斥力。结果,这颗恒星将会再度坍缩,并迫使其全部电子和质子彼此结合为中子,这样一来,这颗恒星将一直收缩到所有的中子都彼此接触为止。到了这一步,这个中子结构物又将会抵制进一步的坍缩,这颗星于是成为一颗中子星。这样的中子星将把太阳的全部质量压缩在一个直径只有16公里的球体内。结果,它的表面引力将是地球引力的210,000,000,000倍。

    在某些条件下,引力甚至能进一步战胜中子结构的抗拒。这时候,再也没有任何东西能够抵抗得住它的进一步坍缩了。结果,这颗恒星就会坍缩到体积等于零,而它的表面引力就会无限地增大。

    根据相对论,一颗恒星所发射出来的光,当它克服该恒星的引力场而向外射出的时候,将会失去一定的能量。引力场越大,所失去的能量也越大。这一点已经由科学工作者经过天文观测和实验室实验得到证实。

    由太阳这样的普通恒星发射出的光,它失去的能量是很有限的。由白矮星发射出的光会失去较多的能量;由中子星发射出的光会失去比这更多的能量。当这颗中子星进一步坍缩时,就会出现这样一种情况:从它的表面向外射出的光将会失去它的全部能量,从而根本不可能逃逸出去。

    一个比中子星坍缩得更厉害的天体,它的引力场将是如此之强,以致任何靠近它的东西都将被它所捕获,并且再也不能从它里面逃逸出去。这就如同被捕获的物体落进一个无底洞的情况一样。而且,正如上面所说,甚至连光也不能逃逸出去,因此,这个坍缩了的天体将是黑的。正因为它既像个无底洞,而且又是黑的,所以天文学家就把它叫做“黑洞”。

    天文学家目前正在宇宙的各个角落寻找可证明确有这种黑洞存在的证据。
第16节
    这个问题的答案取决于你所说的是什么样的恒星,以及你所指的是恒星的哪一个部位。

    在我们能观测到的恒星中,99%以上都和太阳一样,属于称为“主序星”的一类。至于恒星的温度,我们一般是指恒星的表面温度。下面我们就从这里谈起。

    任何恒星都具有一种在其自身的引力作用下发生坍缩的倾向,但是当它坍缩时,它的内部会变得越来越热。而当它的内部温度越来越高时,这颗恒星就有一种发生膨胀的倾向。最后,两种倾向会达到平衡。结果,这颗恒星便达到了某种固定的大小。一颗恒星的质量越大,为了平衡这种坍缩所需要的内部温度就越大,因而它的表面温度也就越高。

    太阳是一颗中等大小的恒星,它的表面温度为6000℃。质量比它小的恒星,其表面温度也比它低,有一些恒星的表面温度只有2500℃左右。

    质量比太阳大的恒星,其表面温度也比太阳高,可达10,000℃、20,000℃,甚至更高。在所有已知的恒星中,质量最大、因而温度最高、亮度最大的恒星,其稳定的表面温度至少可达50,000℃,甚至可能更高。也许可以大胆地说,主序星的最高的稳定表面温度可以达到80,000℃。

    为什么不能再高呢?质量再大的恒星,其表面温度会不会比这还要高呢?到这里,我们不得不停下来。因为,一颗普通恒星,如果具有这样大的质量,以致它的表面温度竟高达80,000℃以上,那么,这颗恒星内部的极高温度就会使它发生爆炸。在爆炸时,也许在瞬间会发出比这高得多的温度,然而当它爆炸之后,剩下来的将是一颗更小和更冷的恒星。

    但是恒星的表面并不是温度最高的部分。热会从它的表面向外传播到该恒星周围的一层很薄的大气层(亦即它的“日冕”)。这里的热量从总量上说虽然不算大,但是,由于这里的原子数量同该恒星本身的原子数量相比是很少很少的,以致每一个原子可以获得大量的热供应。又因为我们以每一个原子的热能作为测量温度的标准,所以,日冕的温度高达1,000,000℃。

    此外,恒星的内部温度也比其表面温度高得多。要使恒星的外层能够战胜巨大的向里拉的引力,就必须是这样。已经查明,太阳中心的温度大约为15,000,000℃。

    自然,那些质量比太阳大的恒星,它们不但表面温度更高,中心温度也同样会更高。同时,对于具有一定质量的恒星来说,其核心的温度一般总是随着它的年龄的增长而越来越高的。有一些天文学家曾试图计算出,在整个恒星爆炸的前夕,其核心的温度可以达到多少度。我所看到的其中一种估算,认为最高可达到6,000,000,000℃。

    那些不属于主序星的天体,其温度有多高呢?尤其是那些在六十年代新发现的夭体,其温度可达到多少度呢?例如脉冲星的温度可能达到多少度呢?有些天文学家认为,脉冲星实际上就是非常致密的“中子星”,这种中子星的质量虽然和一颗普通恒星一样大,但是它的直径只有十几公里。这样的中子星的核心温度会不会超过6,000,000,000℃这个“最大值”呢?此外,还有类星体,有人认为类星体可能是由数百万颗普通恒星坍缩而成的,既然如此,这种类星体的核心温度又有多高呢?

    所有这些问题,迄今为止,还没有人能够回答。
第17节
    我们知道,当质子和中子相互结合而形成原子核时,这样的结合不但是一种较稳定的结合,而且所含有的质量要比同样一些质子和中子单独存在时所含有的质量少。因此,在发生这样的结合时,多余的质量就会转变为能量而被发射出去。

    一千吨氢(氢核由单个质子组成)可以转变为993吨氦(氦核由两个质子和两个中子结合而成)。失去的这7吨质量将作为同它等效的能量而被释放出来。

    凡是象太阳这样的恒星都会辐射出以这种方式形成的能量,太阳每秒钟会把大约630,000,000吨氢转变为略少于625,400,000吨氦。换句话说,它每秒钟会失去4,600,000吨质量,然而即使在这种惊人的速率下,太阳仍然含有足够多的氢,以保证这种过程继续不断地进行数十亿年之久。

    不过,太阳的氢供应量总有一天会消耗殆尽。这是不是说,到了那一天,这样的聚变过程将会终止,太阳从那时起将会成为一颗冷星呢?

    情况并非如此,因为氦核并不是质子和中子的一种最“节约”的组合方式。氦核还可以经过聚变转化为更加复杂的原子核,例如可以经过聚变而成为象铁原子等一类很复杂的原子核,同时发射出更大的能量。

    由此可见,前面所说的那1,000吨氢聚变为993吨氦之后,还可以进一步聚变为991.5吨铁。也就是说,当氢聚变成氦时会有7吨质量转变为能量,而当氦聚变为铁时,只有1.5吨的质量转变为能量。

    然而,到了氢原子都聚变为铁原子,聚变过程就到头了。因为在铁原子核中,质子和中子是以最稳定的形式组合在一起的。铁原子的任何转化,不论是转化为较简单的原子,还是转化为更复杂的原子,总是吸收能量、而不是放出能量。

    因此可以说,当一颗恒星发展到“氦阶段”时,它已经用掉了五分之四可资利用的聚变能,而当朝着“铁的阶段”发展时,它放出剩下的那五分之一的聚变能,全部聚变能到此就用完了。

    但是再往后又将发生什么情况呢?

    在一颗恒星超过氦阶段继续向前发展的过程中,该恒星核心的温度将会变得越来越高。有人提出一种理论说,当恒星发展到铁阶段时,其核心的温度将会高到足以引起产生大量中微子的核反应。由于中微子不会被星体物质所吸收,所以它们一旦形成,就会以光速向四面八方飞奔,并把能量一起带走。这样一来,恒星的核心就会失去能量,并且很快就突然冷却下来,结果,这颗恒星就会坍缩成一颗白矮星。

    在坍缩过程中,它的外层,由于仍然含有许多没有铁原子那么复杂的各种原子,因而将会全部立即发生聚变,并爆炸而成为一颗“新星”。由此产生的能量将会形成一些比铁更为复杂的原子,即周期表中位于铁以后的各种原子——一直到铀原子和超铀原子为止。

    含有重原子的这种“新星”的碎屑将和星际气体混合在一起。由这类气体所形成的恒星就是“第二代恒星”,正因为如此,所以在“第二代恒星”中才含有少量在恒星本身的聚变反应中绝不可能形成的各种复杂原子,太阳就是这样的第二代恒星,而这也正是地球中为什么会有金和铀这类元素的原因。
第18节
?米?花?书?库? ;__
    第一,恒星会发射出无质量的电磁辐射——光子,这种电磁辐射包括从能量最大的γ射线到能量最小的射电波(甚至一个冷
返回目录 上一页 下一页 回到顶部 0 0
未阅读完?加入书签已便下次继续阅读!
温馨提示: 温看小说的同时发表评论,说出自己的看法和其它小伙伴们分享也不错哦!发表书评还可以获得积分和经验奖励,认真写原创书评 被采纳为精评可以获得大量金币、积分和经验奖励哦!