按键盘上方向键 ← 或 → 可快速上下翻页,按键盘上的 Enter 键可回到本书目录页,按键盘上方向键 ↑ 可回到本页顶部!
————未阅读完?加入书签已便下次继续阅读!
TFT…LCD虽然差点,但是至少也是第一波。如果晶圆变成了跟着别人屁股后面转,这不是有损自己的光辉形象嘛!
“0。35微米?你说话过脑子没有技术来源在哪里?你知道建一条0。35微米的晶圆厂要多少钱吗?”
随着晶圆工艺进程的逐步提高,晶圆厂的造价也在逐步提高。这也是908只要20个亿,而909则上升到了100个亿的主要原因。
两者之间的核心区别在与,908的工艺是0。9微米,909则是0。5微米。
0。35微米的晶圆厂的造价,在国际上,已经上升到10亿美元级别了。(0。35微米,在国际上的批量的普及,是在95年之后的事情,Pentium Pro就是世界上第一批采用此工艺(P854),第一批量产的芯片。)
当然,这里还有些其他区别,例如产量,晶圆尺寸等。
如果晶圆工艺这么容易的话,那个破光刻机也就没有必要牵动这么多人的心了。
两个人很快就自己吵了起来。
————————
“永兴,你是啥意见?你不是把我俩叫来,看吵架的吧。”
“你们说的都对,又都不对。”
“怎么讲?”
“晶圆厂要上,但也要考虑现实情况,空喊口号是没有用的。我们毕竟没有积累。
但同时,我们的目标也要实现,钱不能白花!如果只是上2微米的晶圆厂,根本没有意义。”
“咦?你这是啥意思?两面的话都让你说全了!”
两位老乡同学,都觉得自己的耳朵出了问题。
“这次我准备,用2微米的半导体设备及工艺,来生产1微米的芯片!”
。。。
“这怎么可能?”
“我就知道你脑袋里肯定有东西。”
两个不同性格的人,在沉思片刻后,发出了完全不同的感叹。
“你不是在开玩笑吧。如果真有这种技术,为什么全球这么多企业每年投入这么金钱,去改进他们的工艺流程,提高生产设备的精度?908工程是在干什么?”
叶静生性比较保守,看事情更多的是看风险。
“这个技术是有的。这也是为什么这个工程被叫做一号工程的缘故。它的保密级别甚至高于液晶的ODF工艺。”
————————
“好吧,你说吧。我们准备好了。”
这已经不是第一次了,成永兴召集两人商量一些高度机密性的科技信息。
经过MEMS,LED,以及LCD的不断洗礼,两个人对晶圆工艺已经不陌生了。
在后世,人们一提起半导体设备,被津津乐道的,就是光刻机。大家普遍认为,光刻机是中国在半导体工艺上落后的唯一瓶颈。
这句话对,也不对。
对,是因为,中国在半导体工艺领域,被甩得最远的代表设备就是光刻机。
其他设备,例如蚀刻设备等,它们与国际先进水平,即使有些差距,差距也没有这么大,甚至某些设备,国产设备已经开始反攻国际市场。
光刻机决定半导体制程的情况,仅仅是出现在2005年之后。这就是地球人都知道的,ASML的天王山之战。
ASML在浸入式光刻机上,打了场翻身仗,一举把日本的几家竞争对手掀翻在地,从而奠定了在光刻机市场的垄断地位。
————————
但实际上,在2005年的前后,决定半导体芯片制程的几个核心技术,都不是光刻机。因为此时,光波的波长,还没有撞到极限(193 nm)。
中国已经有了1。5微米的光刻机,但是其他辅助工艺,达不到这么高的精度。
几十年来,对光刻设备的要求主要基于摩尔定律,通过减小波长和增大数值孔径(NA)来获得更高分辨率。
但是激光的可用波长就那么几个,激光波长减少几次,就无以为继了。
2004年开始,光刻机就开始使用193nm波长的DUV激光,谁也没想到,光刻光源被卡在193nm无法进步长达十几年。
哪怕采用了沉浸式光刻机,也仅仅是使晶圆工艺成功突破了几个节点。
过了一段时间,半导体工艺的工艺演进路线,再次遇到了类似的问题。后世的14nm,10nm,7nm的技术突破。都不是通过升级光刻机来实现的。
在光刻机无法升级的情况下,为了突破这个障碍,人们开始寻找别的突围方向。
————————
随着科学家们的脑洞大开,一个行之有效的方法,真的被找到了!
更为可喜的是,这个方法思路非常简单,而且特别适合这个时代。
在完全在不改变设备技术水平的情况下,可以提高晶圆的制程!
之所以这个方法没有被广泛宣传,是因为所有的晶圆厂都在使用。大家都在用的技术,自然就失去了神秘性和趣味性。
灯下黑,指的就是这种情况。
第479章 真假1微米(2)
半导体加工工艺,本质上就是一个在硅晶圆上,不断曝光,蚀刻的过程。
而这个工艺的提升的过程,就是曝光时所用的底片图案,不断进行增密的一个过程。
在大家的传统印象里,底片的增密,就是底片精度的提高过程。增密底片图案,除了提高光刻机精度,就没有别的办法了吗?
在我们的日常生活当中,有个不恰当的例子,那就是套色印刷(或者是彩色打印)。
三色墨水,每个打印的精度都是相同的,但是三色重合打印,单色就变成了彩色!
颜色的精度,就从单色的8位,上升到了256位!
在2005年之后,由于工艺制程的提升,最小可分辨特征尺寸(MRF)已经远远小于光源波长,利用 DUV 光刻机已经无法一次刻蚀成型。
既然无法一次刻蚀成型,那就多刻蚀几次,每一次刻蚀一部分,然后拼凑成最终图案。
从每个部分图形的加工过程来说,用的都是原有的加工方法和设备,但它可以实现更高精度的芯片加工。
它就是《多重图案化技术》!
《多重图案法》就是将一个图形,分离成两个或者三个部分。每个部分按照通常的制程方法进行制作。整个图形最后再合并形成最终的图层。
————————
按照这个理论,图形精度简直可以无限分割下去。
但实际上,这个方案也有它的局限。
光刻机,做到了极限,是因为光波波长的缘故。
图案分割,做到最后,也会有这个问题。
当光罩上图形线宽尺寸接近光源波长时,衍射将会十分明显。
光刻机内部光路对于光线的俘获能力是有限的,如果没有足够的能量到达光刻胶上,光刻胶将无法充分反应,使得其尺寸和厚度不能达到要求。
在后续的显影、刻蚀工艺中起不到应有的作用,导致工艺的失败。
所以用这个方法,步进到7nm,就做不下去了。因为从原理上就出现了问题。
7nm之后,必须使用EUV(深紫)光刻机,那个对中国禁运的光刻机,就是这个道理。
在这个阶段(1微米),它还不是个问题。阻碍晶圆工艺进步的主要原因,来自生产设备,工艺,而不是原理。
————————
任何事情都有利有弊。
这种技术的优点非常突出。那就是不需改变现有设备,或者是做很少的改变,就可以达到提高晶圆工艺的要求。
但弊端也很突出。
第一个弊端,麻烦。
这个技术的思想雏形,第一次出现在130nm阶段,第一次完整出现,则是在30nm阶段。
为什么出现得这么晚?
每道图层,都要进行分解,想想就麻烦得很啊。这个方法,完全是没有办法的办法。
换个高精度的光刻机及其配套工艺,一下子不就解决了嘛!这也是在30nm之前,基本上无人往这个方向思考的原因。
其次,成本。
加工一块芯片所需要的加工工序数目增加了。原来一次加工的步骤,现在要两次,甚至四次才可以。
这在商用芯片的制造上,是很致命的。
例如,如果只采用一次加工,良品率为7成。这完全是个可以接受的数字。但是当一次加工,改成四次加工的时候,整个工艺的良品率就会下降到2成。
多重图案法的核心,是把一张图片分解成多张。这里还会存在分图片互相校准的问题。所以,在实际的生产过程中,采用这种工艺以后,其良品率会极大降低。
用刚才的例子数据来计算,良品率,会从7成,下降到不到一成!
英特尔之所以在10nm节点,耗费了接近5年的时间,跟他们的多重四图案曝光(SAQP)良率较低,有关系。
对于一个芯片厂来说,良品率就是他们的饭碗。
如果在14nm的时候,芯片成本是300美元。升级芯片生产工艺的目的,自然是因为进程越高,占用的晶圆面积越小。采用新工艺后,芯片的生产成本,也自然降低。同样功能芯片,它的成本在10nm时代,应该降为150美元才对。
但这种工艺,增加了工序的数目,实际上已经增加了芯片的加工成本。再加上良品率的问题,采用新方法生产出来的芯片,弄不好成本还高于300美元了。
在这种情况下,为什么要量产10nm
在intel占据垄断地位的时候,表现就更为突出。这也是PC的CPU连续多年,速度根本没有怎么提升的根本原因。
————————
但这个理由,对全彩无效,对光电无效。
全彩,乃至光电,并不是一间芯片公司,这个10nm工艺解决的是有无问题,生死问题。
这就与花为一样。花为是卖芯片的吗?
不是!他是卖5G系统!
有了这300美元的芯片,几万美元的系统就能卖出去!没有,死路一条!
这里的进程升级,节省的不是那150美元的成本。它的价值是几万美元!
全彩也是同样道理。有了这十几美元的芯片,上千美元的显示器就能卖出去!这款芯片,代表的不仅仅是十几美元的加工成本。
在这种情况下,良品率不要说3成,就是1成,甚至只有百分之一,也必须要上。
当然,良品率还是需要提高的。
良品率的提高,就是个磨耐心,磨时间的过程,没有什么了不起的。
LED时代,大家经历过,LCD,现在正在经历。所有人都有了信心。
————————
“还真有好东西啊!这个项目一做成,你可就牛B大了啊!”
看着老乡在黑板上,一顿比比划划,两个人都听明白了。
这个项目如果做成。它的影响力实在是太大了。
TFT…LCD,以前中国没有,你做出来了,填补了国内空白,别人会夸一下。但他绝对意识不到这里的难度真有这么大。
但晶圆一样吗?
中国在一微米这个地方卡了多久?
1微米的技术攻关,国家在531计划时期(1986年),就提出来了。而等到908工程的投产,已经是1997年的事情。
前后两个国家级计划,整整走了11年!就是到现在,1992年,也已经走6年多了。
而且更重要的是,这个技术的极限,不仅仅是用2微米设备来生产1微米芯片。理论上来讲,它甚至可以实现0。5微米!
连909计划都不需要了!
三个国家级计划!
继续提高可不可以,例如0。25微米?
呵呵!
凭此一个技术,中国就可以在半导体工艺上,实现对世界先进水平的反超!
更重要的是,这个技术需要什么开发成本吗?
所有的设备,都是现有设备啊!
这个项目只要做成,不仅仅是成永兴,包括严亮和叶静,都会名声大噪。一次搞出三个工程院院士,绝对没有问题。
第480章 真假1微米(3)
“这个项目要严格保密!多重图案技术,绝对不可以外传。它会一直保密。一直到我们的真1微米工艺出来,直到我们的晶圆产业走上正轨。”
成永兴的一句话,就浇灭了两个伙伴的热情。
“真1微米?怎么工艺还出来真假了?”
“对,这个多重图案化技术,就是个假的。”
“那真的是什么样的?”
两个人都来了兴趣。孙悟空有真假,是因为有人冒充。怎么工艺还有真假?能实现,就是真的啊!
“真的工艺技术,是靠真功夫,而不是这种取巧的方法。”
“工艺上哪有取巧的方法,你的ODF难道不是取巧?”
叶静一撇嘴,对这种奇谈怪论不以为意。
这位同乡,是个实用主义渗透到骨子里的人。黑猫白猫论,天天挂在他的嘴上。
为了达到目的,想出来的各种奇思怪想,经常让人觉得匪夷所思。
这些方法,在科班出身的人眼里,很多都是离经叛道,甚至是大逆不道的事情。
别人搞自动化,他搞人海战术。别人搞流